справедливо для сильно разогретой и одновременно сжатой системы.
Приведенные применения уравнения Богословова не исчерпывают все его возможности. Дальнейшее изучение этого уравнения - актуальная задача.

ЛИТЕРАТУРА
1. Богословов Л.Н. Проблемы динамической теории в статистической физике. ГИТТЛ, М., 1946.
2. Хилен Э. Функциональный анализ и полугруппы. ИД, М., 1951.
5. Добрушкин В.А. Функциональный анализ и его приложения, 1989, т. 2, с. 31.

NONLINEAR PARTIAL DIFFERENCE EQUATIONS FOR ISING MODEL N-POINT GREEN'S FUNCTIONS

J. H. H. Perk

Institute for Theoretical Physics
State University of New York at Stony Brook
Stony Brook, New York, 11794, U.S.A.

This contribution is concerned with recent developments and results for the n-point correlation functions of the two-dimensional Ising model. The major results to be discussed here have been reported briefly elsewhere, by McCoy, Wu, and the author[1].

The two-dimensional Ising model has already had a long history[2,3]. After the calculation of the partition function[4,5] and the spontaneous magnetization[6], great interest arose in the correlation functions[7,8,9]. There are several methods for obtaining those correlations. One class of methods is expressing them as determinants, often infinite block-Toeplitz determinants, which then have to be analyzed further. Another class of methods is to derive identities between the correlation functions. In the first place there are linear identities[9-11], which can be generally formulated for Ising models on lattice A with arbitrary interactions and in arbitrary dimension as

$$\langle \sigma_A \rangle = (-1)^{|A \cap B|} \exp \left\{ -\frac{1}{k_B} \sum_{C \subset A \cup B} \sum_{C \cap A} K_C \sigma_C \right\}$$

The proof is rather easy after going to a quantum formulation in terms of the Pauli matrices at site a, \(\sigma_a \equiv \sigma_a^x, \sigma_a^y, \sigma_a^z \). Then it follows that

$$\langle \sigma_A \rangle = \langle \sigma_B \rangle = \langle \sigma_A \rangle$$

and the result (1) follows from the cyclic property of trace (KMS-property) and

164

165
\[
\sigma_B^{\gamma} = \exp \left\{ \sum_C K_C \sigma_C^x \right\} = \exp \left\{ \sum_C (-1)^{|B \cap C|} K_C \sigma_C^x \right\} \sigma_B^{\gamma}.
\]

(2b)

These identities express 2-point functions in 4-point functions, 4-point in 6-point, etc. Therefore, closure relations are needed to determine the full set of correlations from them, which is a well-known problem for the BBGKY hierarchy\(^{12}\), although in some cases this has been ingeniously circumvented\(^{11}\). There are also planar lattices, nonlinear identities\(^{13}\), which in general express n-point functions in terms of higher correlations, and related useful inequalities\(^{14}\). It is, however, also possible to get a closed set of quadratic identities involving n-point functions only\(^{15}\), provided one includes order variables (spins) and disorder variables, which are related by the Kramers-Wannier duality\(^{16}\). We shall come back to this later.

The first real step towards the understanding of the Ising model correlations was the asymptotic expansion of the large distance behavior of the two-point function\(^{17}\). Next the behavior of particular n-point functions was studied\(^{18,19}\), such as the four-spin correlation of spins on a line or of two pairs of neighboring spins, energy-density correlations; the transverse correlations\(^{20}\) could be obtained also. Then there were two major discoveries. In the first place, Kadanoff found that at the critical temperature the n-point functions could be expressed in a transparent way in terms of 2-point functions provided that all spins are well-separated\(^{21}\). This consequence of his hypothesis of reduction of critical fluctuations and algebra of local operators, has been checked by explicit calculations\(^{13}\). The second important discovery was for the two-point function in the so-called scaling limit, where distances are scaled with the correlation length upon going to the critical point. In 1973 Barouch, McCoy, Tracy, and Wu announced that it can be expressed in terms of the solution of a nonlinear differential equation and various consequences were given\(^{22}\) before the details\(^{23}\) appeared in 1974. These involve three steps. First the block-Toeplitz determinant is expressed in terms of one or two dispersion integral expansions, the n-th term being a 2n-or (2n-1)-fold integral. Then the scaling limit is taken and rotational invariance is checked. Finally the expansions are shown to be expressible in terms of the Painlevé function\(^{24}\) of the third kind\(^{25}\), using the results of the thesis of Myers\(^{26}\). The first two steps of this program have been carried out also for the n-point function\(^{27}\). In the papers mentioned above very explicit results have been given for the scaling functions and the corrections to scaling. Some recent work of Abraham\(^{28}\) may be noted here also, where based on previous work\(^{29}\) a Wick theorem and a rigorous derivation of \(\gamma = 7/4\) and \(\delta = 15\) are given. The scaling limit results\(^{27}\) for the n-point function have been used to study the string structure (collinearity versus noncollinearity\(^{30}\)) and the effects of a small magnetic field\(^{31}\); furthermore, McCoy and Wu introduced a new kind of particles (imps)\(^{32}\). Critical point and scaling limit correlations were also studied by field theory\(^{33}\) and \(S\)-matrix methods\(^{34}\). For more general models, the critical correlations at large separation were also inferred from field theory methods\(^{35}\) and mappings to the Gaussian\(^{36}\) and the Luttinger\(^{37}\) model. Some of these treatments have been given for one-dimensional quantum models only, but by now there is a well-established relationship between those quantum chain systems and their two-dimensional classical counterparts\(^{20,39}\).

Another milestone in the theory of Ising model n-point functions was the work of the Kyoto mathematicians Sato, Miwa, and Jimbo\(^{40}\). Using the Clifford algebra approach\(^{40,41}\), they expressed the ratios of certain matrices of auxiliary n-point order-disorder variable correlations and the n-point function itself as a dispersion integral expansion\(^{23,27}\). Then they studied the properties of this expansion in the scaling limit under analytic continuation of the parameters, (monodromy data) from which they concluded it to be an isomonodromy family with regular singularities. This in turn was enough for them to write down a system of linear differential equations. The integrability conditions (deformation theory) of this system then led to a completely integrable system of nonlinear differential equations, that is reduced to the Painlevé equation of the third kind\(^{32}\). Finally, they related the n-point function with the solution of the nonlinear system. In their treatment there are several nontrivial convergence problems which have been investigated in more detail by Palmer and Tracy\(^{41}\). Also, the work of Sato, Miwa, and Jimbo has stimulated a lot of further progress in the theory of differential equations and algebraic geometry\(^{42}\) and statistical mechanics\(^{43}\). In particular, based on previous work on the one-dimensional XX-model in the (double) scaling limit\(^{44}\) and on impenetrable bosons\(^{45}\) they were able to write down Painlevé's differential equation of the fifth kind for the reduced density matrix of the boson problem. Independently of this, for the XX-model\(^{46}\) and its subcase the Ising model in transverse field\(^{47}\) other differential equations had been derived for the dynamic correlations at infinite temperature leading to predominantly Gaussian decay\(^{48}\). It is amusing to note here a very striking connection with recent work on \(SU(N)\) gauge theory\(^{49}\) which is made most explicit by looking at the Toeplitz determinant of modified Bessel functions

\[
\det_{1 \leq i, j \leq N} \left(I_{i-j}(2\rho) \right) = \exp \left\{ \rho^2 - \sum_{n=1}^{\infty} \frac{\rho^n}{n!} \frac{\rho_{k_1} \cdots \rho_{k_n}}{k_{k_1} \cdots k_{k_n}} \prod_{j=1}^{n+1} J_{N+k_j+k_{j-1}}(2\rho) \right\}.
\]

(3)
Here the correction terms to the Gaussian for finite N have been calculated using eqs. (11) and (12) of ref. 50, the series converging rapidly for real \(b < (N+1)e^{-1} \); furthermore \(b = 1/3 \) for the XY-model. Also a connection with chiral models is given. Recently it has been stressed that knowledge of properties of the two-dimensional lattice models leads to further information on four-dimensional gauge theories\(^{52,53}\). Finally, nonperturbative field theory in 1+1 dimensions\(^{54}\) has been done based on calculations for the correlation length\(^{55}\) in the 8-vertex model and more results may be obtained using new results for the fermisystem\(^{56}\) and the hard-hexagon model\(^{57}\).

There is by now a list of exactly solvable models, for which the commutation relations\(^{59,69,69}\) imply an infinite number of conservation laws. These models should be completely integrable in the sense that all correlations are to be obtained by, for example, the quantum inverse scattering method\(^{59}\). But so far beyond the Ising or XY-model, only the normalization\(^{60}\) integral of the wave function has been constructed and some interesting results\(^{61}\) in low order perturbation about the impenetrable boson system have been derived. However, for the Ising model and the one-dimensional XY-model there have been further developments for the Green's function on the lattice\(^{62-69}\). McCoy and Wu noted that the three step procedure for the Ising model two-point function in the scaling limit\(^{23}\) could be generalized to the two-point function on the lattice\(^{62}\), omitting the second step of taking the scaling limit and calculating differences involving the dispersion integral expansions for the third step. Another much more direct method has been given\(^{63}\), which is also valid on general planar lattices. Then the uniqueness of the solution of the resulting set of partial difference equations was discussed\(^{64}\). Next results for n-point functions were announced\(^{65,66}\). Independently, Jimbo and Miwa\(^{67}\) constructed difference equations for the two-point function on a diagonal of the lattice, and they also found a connection with the Painlevé equation of the sixth kind. Finally, new equations have been reported for the two-point function of the XY-model (transverse Ising chain)\(^{68,69}\). The new equations, when restricted to critical points, have the form of well-known completely integrable differential-difference (Toda-lattice)\(^{70}\) or partial difference\(^{71}\) equations.

One way of attacking the problem is using a newly formulated Wick theorem\(^{63,65,68,69}\), which gives a set of equations for many other models also\(^{72-74}\). But more research is needed to construct a final equation for the free fermion model\(^{72}\), the Ising model on a triangular lattice\(^{73}\) or in field \(b/2kT \)\(^{74}\), Ising models with boundaries\(^{75}\), periodic layering\(^{76,78}\) or more general periodic structure\(^{79,80}\), the Ising model with an interface\(^{81}\) or a line of impurities\(^{82}\), (see also Abe's related 1/n expansion work\(^{83}\)), and last but not least the Ising model with quenched random layering\(^{84,78}\), which gives rise to essential singularities\(^{85}\), in contrast with the annealed case\(^{77,86}\). It should be noted that in view of the complete integrability many equations can be derived but that only a subset is needed to determine the problem, although it is not always easy to recognize the dependences\(^{65}\).

The Wick theorem which will be used is\(^{63,68,69}\)

\[
\begin{align*}
\text{Tr} (\Gamma_1 \Gamma_2 \Gamma_3 \Gamma_4 \Gamma_5 \Gamma_6 \Gamma_7 \Gamma_8)(\Gamma_i \Gamma_j \Gamma_k \Gamma_l) &= \text{Tr} (\Gamma_1 \Gamma_2 \Gamma_3 \Gamma_4 \Gamma_5 \Gamma_6 \Gamma_7 \Gamma_8)(\Gamma_i \Gamma_j \Gamma_k \Gamma_l) \\
= \text{Tr} (\Gamma_1 \Gamma_2 \Gamma_3 \Gamma_4 \Gamma_5 \Gamma_6 \Gamma_7 \Gamma_8)(\Gamma_i \Gamma_j \Gamma_k \Gamma_l) \\
- \text{Tr} (\Gamma_1 \Gamma_2 \Gamma_3 \Gamma_4 \Gamma_5 \Gamma_6 \Gamma_7 \Gamma_8)(\Gamma_i \Gamma_j \Gamma_k \Gamma_l) \\
+ \text{Tr} (\Gamma_1 \Gamma_2 \Gamma_3 \Gamma_4 \Gamma_5 \Gamma_6 \Gamma_7 \Gamma_8)(\Gamma_i \Gamma_j \Gamma_k \Gamma_l),
\end{align*}
\]

where the \(\Gamma \)'s are fermion operators satisfying the Clifford algebra anticommutation relations

\[
\Gamma_k \Gamma_l + \Gamma_l \Gamma_k = 2 \delta_{k,l}
\]

and the \(O \)'s are products

\[
O_p = \prod_{\ell} \Gamma_\ell \quad (p=1,2,3,4),
\]

where the factors are either exponents of quadratic forms or linear combinations of \(\Gamma \)'s, i.e. depending on \(p \) or \(\ell \)

\[
O_p \ell = \text{exp} \left\{ \sum_{m,n} A_{mn}^\ell \Gamma_m \Gamma_n \right\}
\]

or

\[
O_p \ell = \prod_{k} \lambda_{p \ell k} \Gamma_k.
\]

An alternative form is the theorem on compound Pfaffians:

Let \(\{(i,j)\}, \) for \(i,j \in \mathbb{N}, \) be a triangular array, and let

\[
\begin{align*}
Pf (X) &= Pf \left\{ \begin{array}{c} i \ j \ \end{array} X \right\} \\
\text{then} \quad Pf (A \cup B) &= Pf \left\{ \begin{array}{c} i \ j \ \end{array} A \cup B \right\} \left\{ \begin{array}{c} i \ j \ \end{array} A \right\} \left\{ \begin{array}{c} i \ j \ \end{array} B \right\} \left\{ \begin{array}{c} i \ j \ \end{array} A \right\}. \quad (8b)
\end{align*}
\]

Related results have been mentioned in the older mathematical literature\(^{87}\). The proof of the Wick theorem uses doubling of the Hilbert space and rotational invariance\(^{78,79}\), as might have been expected for Gaussian integrals on Clifford algebra\(^{88}\). Combinatorial proofs of (8) can be given also.

The results will be given for the inhomogeneous Ising model on a rectangular lattice, with the interaction energy
- $\beta H = \sum_{m,n} \left(H_{MN} \sigma_{mN} \sigma_{m+1N} + V_{MN} \sigma_{mN} \sigma_{m+1N} \right)$.

This gives the Ising model on arbitrary planar lattices by setting appropriate bonds zero or infinity. The row-to-row transfer matrices are defined in the usual way as

$$T_M = \exp \left\{ \sum_N \left[H_{MN} \sigma_2 \sigma_2 \right] \right\},$$

$$T_{M+1} = \left[\prod_N \left\{ 1 + 2 \sinh (2 V_{MN}) \right\} \right] \exp \left\{ \sum_N V_{MN} \sigma_2 \sigma_2 \right\}.$$

where

$$\sinh (2 V_{MN} \sigma_2 \sigma_2) = \cosh (2 V_{MN}) \tanh (2 V_{MN}) = 1,$$

and the Pauli matrices are chosen in the representation

$$\sigma_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \quad \sigma_2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \quad \sigma_2 = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right).$$

Row (10a) and (10b) give the Boltzmann weights of the horizontal interactions in row M and the vertical interactions between rows M and $M+1$, respectively. More precisely, T_{M+1} is a matrix with elements

$$T_{\{\sigma_{mN}\} | \{\sigma_{m+1N}\}} = \prod_N \left(e^{V_{MN}} e^{-V_{MN}} \right) \exp \left\{ \sum_N V_{MN} \sigma_2 \sigma_2 \right\}$$

or

$$T_{M+1} = \prod_N \left(e^{V_{MN}} + e^{-V_{MN}} \right)$$

$$= \prod_N \left[\cosh (2 V_{MN}) \right] \exp \left(2 V_{MN} \sigma_2 \sigma_2 \right).$$

Then the spin correlations can be rewritten

$$\langle \sigma_{M_1 N_1} \cdots \sigma_{M_s N_s} \rangle = \langle \prod_{i=1}^s \sigma_{M_i N_i} \rangle,$$

where the canonical average now reads

$$\langle \ldots \rangle = \frac{\text{Tr} \left(\cdots \right)}{\text{Tr} \left(\prod_{j=1}^m T_j \right)}.$$

We also have to take account of correlations involving the disorder variables of Kadanoff and Ceva [15]. Such correlations are expressed as $\text{Tr} \left(e^{-b \mathcal{X}} \right) / \text{Tr} \left(e^{-b \mathcal{X}} \right)$, where in $-\beta \mathcal{X}$ the whole string of vertical interactions to the right of the disorder variable V_{MN}, located at (M,N), of the lattice, is replaced by minus itself, i.e., $-V_{MK} - V_{MK}$, see Fig. 1. In the corresponding transforamatrix T'_{M+1}, we then have the replacement

$$\left(e^{V_{MK}} e^{-V_{MK}} \right) \rightarrow \left(e^{-V_{MK}} e^{V_{MK}} \right),$$

$$(e^{-V_{MK}} e^{V_{MK}}) = \sigma^z \left(e^{V_{MK}} e^{-V_{MK}} \right),$$

where the permutation \mathcal{P} is such that

$$m_{P_1} \leq m_{P_2} \leq \cdots \leq m_{P_s}.$$
which expresses the idea that a vertical interaction between \((N,N) \) and \((M,N) \) on the lattice becomes a horizontal interaction between \((N,N-\frac{1}{2}) \) and \((M,N-\frac{1}{2}) \) on the dual lattice, and using the fact that the constant factor in \((10b)\) or \((26)\) cancels out between the denominator and the numerator of \((17)\). Therefore we can write

\[
T_m = \exp \left\{ i \sum_{m,n = \text{integer}} \Gamma_n \Gamma_{n+\frac{1}{2}} \right\}.
\]

The Clifford algebra operators are important since they obey a linear "time-evolution",

\[
\Gamma_n (m) = \cos \frac{\phi}{2} H_{mn} \Gamma_n (m-\frac{1}{2}) + i \sinh \left(2 H_{mn} \right) \Gamma_{n+\frac{1}{2}} (m-\frac{1}{2}),
\]

\[
\Gamma_{n+\frac{1}{2}} (m) = \cos \frac{\phi}{2} H_{mn} \Gamma_{n+\frac{1}{2}} (m+\frac{1}{2}) + i \sinh \left(2 H_{mn} \right) \Gamma_n (m+\frac{1}{2}),
\]

for \(mn = \text{integer} \), as can be seen calculating expressions \(T_M T^{-1} \).

We have now constructed a very symmetric formalism treating lattice and dual lattice on completely equal footing. The last subtle difference left, the powers of \(i \) in \((24), (25)\), can be eliminated using the redefinition

\[
\sigma_n \equiv \sum_{k \geq n} \Gamma_k,
\]

so that

\[
\sigma_n = (-i)^n \sigma_n^x,
\]

\[
\mu_n = (-i)^n \sigma_n^{N+\frac{1}{2}}.
\]

One then has, for \(mn = \text{integer} \),

\[
\sigma_n T_m = T_m \sigma_n.
\]

The equations \((33)\) are summarized in fig 2. The order variables \(q_n (N) \) are located at integer lattice coordinates; the disordered variables \(q_{N+\frac{1}{2}} (N+\frac{1}{2}) \) at half-integer coordinates, both indicated by black dots. The spinor variables \(\sigma_n (m) \) are located at the lattice positions \((m, N) \), respectively by small circles. A neighboring order- and disorder variable pair is related by multiplying in front with the spinor variable corresponding to the small circle halfway between the two dots.

\[
\sigma_n \equiv \sum_{k \geq n} \Gamma_k,
\]

\[
\mu_n \equiv \sigma_n^{N+\frac{1}{2}}.
\]
It is now time to write down the main results, which are expressed in the notations

\[\sigma_{M_1 N_1 \ldots M_n N_n} \equiv \langle \sigma_{M_1} \sigma_{M_2} \ldots \sigma_{M_n} \sigma_{N_1} \sigma_{N_2} \ldots \sigma_{N_n} \rangle \] (37)

and

\[\mu_{ij} [M_1, N_1 ; \ldots ; M_n, N_n] \equiv \langle \mu_{ij} \mu_{i'j'} \ldots \mu_{ij_1} \mu_{i_2j_2} \ldots \mu_{ij_n} \rangle \] (38)

with disorder variables on sites \((M_i, N_i)\) and \((M_j, N_j)\). In the following arguments of \(u_{ij}\) will not be given except as far as needed, and \(u_{ij}\) is defined to be antisymmetric in \(i\) and \(j\). Correlations involving more disorder variables are expressed as Pfaffians in terms of the correlations with two disorder variables, i.e., from the Wick theorem it follows that

\[\sigma_{ijk} \mu_{ij} \mu_{jk} + \mu_{ik} \mu_{jk} = \] (39)

Furthermore,

\[S_1 (M, N) \equiv \sinh (2 \mathcal{H}_{MN}) \], \(C_1 (M, N) \equiv \cosh (2 \mathcal{H}_{MN}) \),

\[S_2 (M, N) \equiv \sinh (2 \mathcal{V}_{MN}) \], \(C_1 (M, N) \equiv \cosh (2 \mathcal{V}_{MN}) \). (40)

Then the results are, without spelling out the details connected with the point- and half-line violations mentioned before here,

\[S_x (M_i, N_i) S_x (M_j, N_j) \left\{ \sigma \sigma [M_i, N_i, M_j, N_j] - \sigma [M_i, N_i] - \sigma [M_j, N_j] \right\} \]

\[= \mu_{ij} \mu_{ij} [M_i, N_i, M_j, N_j] - \mu_{ij} \mu_{ij} [M_i, N_i] \mu_{ij} [M_j, N_j] \] (41)

for \(i \neq j\),

\[S_x (M_i, N_i) S_x (M_j, N_j) \left\{ \sigma \sigma [M_i, N_i, M_j, N_j] - \sigma [M_i, N_i] - \sigma [M_j, N_j] \right\} \]

\[= \mu_{ij} \mu_{ij} [M_i, N_i, M_j, N_j] - \mu_{ij} \mu_{ij} [M_i, N_i] \mu_{ij} [M_j, N_j] \] (42a)

\[S_x (M_i, N_i) S_x (M_j, N_j) \left\{ \sigma \sigma [M_i, N_i, M_j, N_j] - \sigma [M_i, N_i] - \sigma [M_j, N_j] \right\} \]

\[= \mu_{ij} \mu_{ij} [M_i, N_i, M_j, N_j] - \mu_{ij} \mu_{ij} [M_i, N_i] \mu_{ij} [M_j, N_j] \] (42b)

for \(i \neq j\) and \((M_i, N_i) \neq (M_j, N_j)\),

\[174 \]

\[175 \]
\[S_1 (M_{i-1}, N_{j}) \{ \sigma \mu_{ij} [M_{i}, N_{j+1}] - \sigma [M_{i}, N_{j+1}] \mu_{ij} \} = \mu_{i} [M_{i-1}, N_{j}] \mu_{j} - \mu_{i} \mu_{j} [M_{i-1}, N_{j}] \]

(43a)

\[S_2 (M_{i}, N_{j}) \{ \sigma \mu_{ij} [M_{i+1}, N_{j}] - \sigma [M_{i+1}, N_{j}] \mu_{ij} \} = \mu_{i} \mu_{j} [M_{i}, N_{j-1}] - \mu_{i} [M_{i}, N_{j-1}] \mu_{j} \]

(43b)

for \(i \neq j \). There are many more equations \(1/ \), which can be obtained by interchanging order- and disorder variables or replacing in some of the disorder variables \(H \) by \(N \) and/or \(N \) by \(H \). These equations though linearly independent, are consequences of (41), (42), and (43), i.e., they are algebraically dependent.

In the translationally invariant case,

\[H_{MN} = H, \quad V_{MN} = V, \]

(44)

there is one more equation which can be derived using Wick theorems and translation invariance several times:

\[S_1 \left\{ \sigma \left[M_{i}, N_{j} \right] \mu_{ij} \left[M_{i}, N_{j-1} \right] \right\} + S_2 \left\{ \sigma \left[M_{i}, N_{j} \right] \mu_{ij} \left[M_{i-1}, N_{j} \right] \right\} + \sum_{i \neq j} \mu_{i} [M_{i}, N_{j-1}] \mu_{j} [M_{i-1}, N_{j}] \]

(45)

It goes to far to sketch the derivation here. For\(2 \) this equation is a first (sum) integral of (41) and (42), see ref. 63/1. Also in the scaling limit an integral of eqs. (41), (42), (43) can be written down \(1/ \) which comes from precisely half of eq. (45), the sum vanishing in the scaling limit. Finally, using the above equations and rotational invariance, the equations of Sato, Inoue, and Jimbo \(60/ \) for the \(n \)-point functions in the scaling limit can be recovered. An important future problem is trying to find analogues of eq. (45) for more general Ising models \(72-64/ \) or to search for identities for Green's functions in more general systems with a duality transformation and with infinitely many conservation laws.

It is a pleasure to thank Professor B. M. McCoy and Professor T. T. Wu, who greatly contributed to the research presented here. This work is supported in part by the National Science Foundation under Grant No. PHY-79-06376.01.
In statistical mechanics the studies of critical phenomena and phase transitions have long been, to a large extent, centered around the lattice systems. Besides the intrinsic interest connected to the lattice systems as models of real physical situations, she is in general attracted to their consideration by the possibility of obtaining exact non-trivial solutions.

For a reason of that sort space-time lattices were recently introduced as a technical device to obtain cut-off field theories, so that their solutions would give some insight into field theories defined in continuum Wirkowski space-time. Once a lattice field theory has been formulated, the original problem becomes one of statistical mechanics. The general philosophy is that at the critical point the theory should lose memory of the lattice structure, and the continuous space-time symmetries be recovered. Lattice gauge theories are especially remarkable for their relation to the classical spin systems of statistical mechanics [1].

Yet the soluble problems are very few in number, and the Ising model still stands at the very frontiers of present knowledge. Its only drawback: so far no exact solution has been found in more than two dimensions [2].

On the other hand a great deal of interest has recently risen in the so-called glassy states of solids. The latter are amorphous systems exhibiting a typical long-range positional disorder of atoms. This results from the long-range random deviation from the perfect form of densest lattice packing of a set of hard spheres. Typically such systems show a local (short range) order: five binding rings originated from the prevalence of close-packed ordered sets of 5 tetrahedra [3].

Tetrahedra do not fill \(\Gamma^3 \) regularly but – at the expense of small elastic...